summaryrefslogtreecommitdiff
path: root/content/posts/binary-exp.md
diff options
context:
space:
mode:
Diffstat (limited to 'content/posts/binary-exp.md')
-rwxr-xr-xcontent/posts/binary-exp.md300
1 files changed, 300 insertions, 0 deletions
diff --git a/content/posts/binary-exp.md b/content/posts/binary-exp.md
new file mode 100755
index 0000000..e3c0704
--- /dev/null
+++ b/content/posts/binary-exp.md
@@ -0,0 +1,300 @@
1---
2title: "Basics of Binary Exploitation"
3date: 2019-08-19T11:53:57+05:30
4description: "All you need to get started with binary exploitation"
5draft: false
6---
7
8## Intro into assembly
9Each personal computer has a microprocessor that manages the computer’s arithmetical, logical, and control activities.
10
11Each family of processors has its own set of instructions for handling operations like getting user input, displaying info on screen etc. These set of instructions are called ‘machine language instructions’. A processor can only understand these machine language instructions which is basically 0’s & 1’s. So, here comes the need of our low-level assembly.
12
13Assembly can be intimidating so I will sum it up for you and this is (pretty) enough to start pwning some binaries.
14
15- In assembly you are given 8-32 global variables of fixed size to work with which are called “registers”.
16- There are some special registers also. MOst important is “program counter”, which tells the cpu which instruction we’re executing next. This is same as IP(instruction pointer) - don’t get confused.
17- Technically, all the computation is executed on registers. A 64-bit processor requires 64-bit registers, since it enables the CPU to access 64-bit memory addresses. A 64-bit register can also store 64-bit instructions, which cannot be loaded into a 32-bit register. Therefore, most programs written for 32-bit processors can run on 64-bit computers, while 64-bit programs are not backward compatible with 32-bit machines.
18- But big programs need more space so they access memory. Memory is accessed by using memory location or through push & pop op. on a stack.
19- Control flow is handled via altering program counter directly using jumps, branches, or calls. These inst. are called “GOTOs”.
20- Status flags are generally of 1-bit. They tells about wheather flag is set or reset.
21- Branches are just GOTOs that are predicated on a status flag, like, “GOTO this address only if the last arithmetic operation resulted in zero”.
22- A CALL is just an unconditional GOTO that pushes the next address on the stack, so a RET instruction can later pop it off and keep going where the CALL left off.
23
24I think this is enough info about assembly and you’re ready to dive into binary exploitation. Wanna learn more then this book is awesome - [here](https://beginners.re/RE4B-EN.pdf)
25
26## Let’s start pwning binaries
27To start you will need a disassembler(converts 0’s & 1’s [machine code] into assembly) like radare2, IDA, objdump etc. and a debugger(used to debug programs) like gdb, OllyDbg etc.
28
29Let’s get started: Here is the code that I wrote and we will try to exploit it. It’s a simple license checker which check two strings. Source will be available on my [github](https://github.com/anon6405/binary_exploit).
30
31crackme1.c
32```c
33#include <stdio.h>
34#include <string.h>
35int main(int argc, char *argv[]){
36 if(argc==2){
37 printf("Checking Licence: %s\n", argv[1]);
38 if(strcmp(argv[1], "hello_stranger")==0){
39 printf("Access Granted!\n");
40 printf("Your are 1337 h4xx0r\n");
41 }
42 else{
43 printf("Wrong!\n");
44 }
45 }
46 else{
47 fprintf(stderr, "Usage: %s <name>\n", argv[0]);
48 return 1;
49 }
50
51 return 0;
52}
53```
54
55This code is pretty simple and I hope you can understand it. So lets compile it.
56```shell
57$ gcc crackme1.c -o crackme1
58```
59
60Now we will use gdb to debug our program
61```
62$ gdb crackme1
63```
64
65Now we know that every program has main function. So lets disassemble it.
66```
67(gdb) disassemble main
68```
69
70It will through this:
71```shell
72Dump of assembler code for function main:
73 0x0000000000001169 <+0>: push %rbp
74 0x000000000000116a <+1>: mov %rsp,%rbp
75 0x000000000000116d <+4>: sub $0x10,%rsp
76 0x0000000000001171 <+8>: mov %edi,-0x4(%rbp)
77 0x0000000000001174 <+11>: mov %rsi,-0x10(%rbp)
78 0x0000000000001178 <+15>: cmpl $0x2,-0x4(%rbp)
79 0x000000000000117c <+19>: jne 0x11e3 <main+122>
80 0x000000000000117e <+21>: mov -0x10(%rbp),%rax
81 0x0000000000001182 <+25>: add $0x8,%rax
82 0x0000000000001186 <+29>: mov (%rax),%rax
83 0x0000000000001189 <+32>: mov %rax,%rsi
84 0x000000000000118c <+35>: lea 0xe71(%rip),%rdi # 0x2004
85 0x0000000000001193 <+42>: mov $0x0,%eax
86 0x0000000000001198 <+47>: callq 0x1040 <printf@plt>
87 0x000000000000119d <+52>: mov -0x10(%rbp),%rax
88 0x00000000000011a1 <+56>: add $0x8,%rax
89 0x00000000000011a5 <+60>: mov (%rax),%rax
90 0x00000000000011a8 <+63>: lea 0xe6b(%rip),%rsi # 0x201a
91 0x00000000000011af <+70>: mov %rax,%rdi
92 0x00000000000011b2 <+73>: callq 0x1050 <strcmp@plt>
93 0x00000000000011b7 <+78>: test %eax,%eax
94 0x00000000000011b9 <+80>: jne 0x11d5 <main+108>
95 0x00000000000011bb <+82>: lea 0xe67(%rip),%rdi # 0x2029
96 0x00000000000011c2 <+89>: callq 0x1030 <puts@plt>
97 0x00000000000011c7 <+94>: lea 0xe6b(%rip),%rdi # 0x2039
98 0x00000000000011ce <+101>: callq 0x1030 <puts@plt>
99 0x00000000000011d3 <+106>: jmp 0x120c <main+163>
100 0x00000000000011d5 <+108>: lea 0xe72(%rip),%rdi # 0x204e
101 0x00000000000011dc <+115>: callq 0x1030 <puts@plt>
102 0x00000000000011e1 <+120>: jmp 0x120c <main+163>
103 0x00000000000011e3 <+122>: mov -0x10(%rbp),%rax
104 0x00000000000011e7 <+126>: mov (%rax),%rdx
105 0x00000000000011ea <+129>: mov 0x2e6f(%rip),%rax # 0x4060 <stderr@@GLIBC_2.2.5>
106 0x00000000000011f1 <+136>: lea 0xe5d(%rip),%rsi # 0x2055
107 0x00000000000011f8 <+143>: mov %rax,%rdi
108 0x00000000000011fb <+146>: mov $0x0,%eax
109 0x0000000000001200 <+151>: callq 0x1060 <fprintf@plt>
110 0x0000000000001205 <+156>: mov $0x1,%eax
111 0x000000000000120a <+161>: jmp 0x1211 <main+168>
112 0x000000000000120c <+163>: mov $0x0,%eax
113 0x0000000000001211 <+168>: leaveq
114 0x0000000000001212 <+169>: retq
115End of assembler dump.
116```
117
118This looks ugly right. Well it’s AT&T syntax, change it to intel using:
119```
120(gdb) set disassembly-flavor intel
121```
122
123For permanent change, create ~/.gdbinit and add
124```
125set disassembly-flavor intel
126```
127
128Again disassemble main and you will get a more readable code
129```shell
130Dump of assembler code for function main:
131 0x0000000000001169 <+0>: push rbp
132 0x000000000000116a <+1>: mov rbp,rsp
133 0x000000000000116d <+4>: sub rsp,0x10
134 0x0000000000001171 <+8>: mov DWORD PTR [rbp-0x4],edi
135 0x0000000000001174 <+11>: mov QWORD PTR [rbp-0x10],rsi
136 0x0000000000001178 <+15>: cmp DWORD PTR [rbp-0x4],0x2
137 0x000000000000117c <+19>: jne 0x11e3 <main+122>
138 0x000000000000117e <+21>: mov rax,QWORD PTR [rbp-0x10]
139 0x0000000000001182 <+25>: add rax,0x8
140 0x0000000000001186 <+29>: mov rax,QWORD PTR [rax]
141 0x0000000000001189 <+32>: mov rsi,rax
142 0x000000000000118c <+35>: lea rdi,[rip+0xe71] # 0x2004
143 0x0000000000001193 <+42>: mov eax,0x0
144 0x0000000000001198 <+47>: call 0x1040 <printf@plt>
145 0x000000000000119d <+52>: mov rax,QWORD PTR [rbp-0x10]
146 0x00000000000011a1 <+56>: add rax,0x8
147 0x00000000000011a5 <+60>: mov rax,QWORD PTR [rax]
148 0x00000000000011a8 <+63>: lea rsi,[rip+0xe6b] # 0x201a
149 0x00000000000011af <+70>: mov rdi,rax
150 0x00000000000011b2 <+73>: call 0x1050 <strcmp@plt>
151 0x00000000000011b7 <+78>: test eax,eax
152 0x00000000000011b9 <+80>: jne 0x11d5 <main+108>
153 0x00000000000011bb <+82>: lea rdi,[rip+0xe67] # 0x2029
154 0x00000000000011c2 <+89>: call 0x1030 <puts@plt>
155 0x00000000000011c7 <+94>: lea rdi,[rip+0xe6b] # 0x2039
156 0x00000000000011ce <+101>: call 0x1030 <puts@plt>
157 0x00000000000011d3 <+106>: jmp 0x120c <main+163>
158 0x00000000000011d5 <+108>: lea rdi,[rip+0xe72] # 0x204e
159 0x00000000000011dc <+115>: call 0x1030 <puts@plt>
160 0x00000000000011e1 <+120>: jmp 0x120c <main+163>
161 0x00000000000011e3 <+122>: mov rax,QWORD PTR [rbp-0x10]
162 0x00000000000011e7 <+126>: mov rdx,QWORD PTR [rax]
163 0x00000000000011ea <+129>: mov rax,QWORD PTR [rip+0x2e6f] # 0x4060 <stderr@@GLIBC_2.2.5>
164 0x00000000000011f1 <+136>: lea rsi,[rip+0xe5d] # 0x2055
165 0x00000000000011f8 <+143>: mov rdi,rax
166 0x00000000000011fb <+146>: mov eax,0x0
167 0x0000000000001200 <+151>: call 0x1060 <fprintf@plt>
168 0x0000000000001205 <+156>: mov eax,0x1
169 0x000000000000120a <+161>: jmp 0x1211 <main+168>
170 0x000000000000120c <+163>: mov eax,0x0
171 0x0000000000001211 <+168>: leave
172 0x0000000000001212 <+169>: ret
173End of assembler dump.
174```
175
176Now make a assumption how this binary works. When you run it without any argument it will display the usage message. If you pass two arguments where first one is program name itself and second one is license key, it will display a access granted or access denied message. Now apply that assumption to assembly code.
177
178For exploitation, we can ignore most of the stuff. So at 0x1178, you can see a cmp function which is comparing a pointer to hex 0x2(which is 2 in decimal). According to our assumption, that must be checking arguments. Just below that 0x117c have a jne(basically jump not equal). So if those strings don’t match, control flow will jump to addr 0x11e3. Now at addr 0x1198, it is calling a printf function, which maybe printing “Checking License:” when you run the binary. Next interesting addr is 0x11b2, it is calling a strcmp(string compare) function. It should be comparing our key with the correct key to verify. Next we have 0x11b7 which is a test function and returns value 0 if strings match. After that we have addr 0x11b9 which is jne(jump not equal), jumps to addr 0x11d5 if strings are not equal. After that we have 0x11c2 and 0x11ce which is calling a puts(it just prints stuff) function, this will print “Access Granted!” and some other text if we give correct key. Next is 0x11d3 which will jump to 0x120c and terminates our program. Now let’s exploit it using gdb to print access granted without using key.
179
180First set breakpoint at main. Breakpoint is a point in memory where your execution stops.
181```
182(gdb) break *main
183```
184
185Now run the program and watch the control flow. You can use pen-paper for better understanding.
186```
187(gdb) run
188(gdb) ni
189```
190
191ni is to execute next instruction. After that just press enter and it will execute the next instruction. Now try running the program with a key.
192```
193(gdb) run random_key
194(gdb) ni
195```
196
197Carefully watch the control flow this time. Now according to our assumption, if we change the value of eax at addr 0x11b7, we are telling the program that the strings matched and it will print the access granted message. So for that set breakpoint 2 to the address of test eax, eax.
198```
199(gdb) disass main
200(gdb) break *0x00005555555551b7
201```
202
203Again run the program with a random_key.
204```
205(gdb) run random_key
206```
207
208After hitting the first breakpoint, type continue to jump to next breakpoint.
209```
210(gdb) continue
211(gdb) info registers
212(gdb) set $eax=0
213(gdb) ni
214```
215
216Here I set the value of eax to 0 and run the program instruction by instruction. After setting eax=0, next addr 0x00005555555551b9 will not be executed as it is jne. Use ni to continue executing next instruction.
217```shell
218(gdb) run random_key
219The program being debugged has been started already.
220Start it from the beginning? (y or n) y
221Starting program: crackme1 random_key
222
223Breakpoint 1, 0x0000555555555169 in main ()
224(gdb) continue
225Continuing.
226Checking Licence: random_key
227
228Breakpoint 2, 0x00005555555551b7 in main ()
229(gdb) info registers
230rax 0x3 3
231rbx 0x0 0
232rcx 0xfff7fdff 4294442495
233rdx 0x68 104
234rsi 0x55555555601a 93824992239642
235rdi 0x7fffffffe563 140737488348515
236rbp 0x7fffffffe170 0x7fffffffe170
237rsp 0x7fffffffe160 0x7fffffffe160
238r8 0xffffffff 4294967295
239r9 0x1d 29
240r10 0xfffffffffffff1a9 -3671
241r11 0x7ffff7f36140 140737353310528
242r12 0x555555555070 93824992235632
243r13 0x7fffffffe250 140737488347728
244r14 0x0 0
245r15 0x0 0
246rip 0x5555555551b7 0x5555555551b7 <main+78>
247eflags 0x206 [ PF IF ]
248cs 0x33 51
249ss 0x2b 43
250ds 0x0 0
251es 0x0 0
252fs 0x0 0
253gs 0x0 0
254(gdb) set $eax=0
255(gdb) info registers
256rax 0x0 0
257rbx 0x0 0
258rcx 0xfff7fdff 4294442495
259rdx 0x68 104
260rsi 0x55555555601a 93824992239642
261rdi 0x7fffffffe563 140737488348515
262rbp 0x7fffffffe170 0x7fffffffe170
263rsp 0x7fffffffe160 0x7fffffffe160
264r8 0xffffffff 4294967295
265r9 0x1d 29
266r10 0xfffffffffffff1a9 -3671
267r11 0x7ffff7f36140 140737353310528
268r12 0x555555555070 93824992235632
269r13 0x7fffffffe250 140737488347728
270r14 0x0 0
271r15 0x0 0
272rip 0x5555555551b7 0x5555555551b7 <main+78>
273eflags 0x206 [ PF IF ]
274cs 0x33 51
275ss 0x2b 43
276ds 0x0 0
277es 0x0 0
278fs 0x0 0
279gs 0x0 0
280(gdb) ni
2810x00005555555551b9 in main ()
282(gdb)
2830x00005555555551bb in main ()
284(gdb)
2850x00005555555551c2 in main ()
286(gdb)
287Access Granted!
2880x00005555555551c7 in main ()
289(gdb)
2900x00005555555551ce in main ()
291(gdb)
292Your are 1337 h4xx0r
2930x00005555555551d3 in main ()
294(gdb)
295```
296
297Voila! You have cracked the program without knowing the correct key.
298
299This one is just a basic intro into binary exploitation and enough to get you started.
300